EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M14B: Mathematical Methods 2

COURSE CODE : MATHM14B

UNIT VALUE : 0.50

DATE : 28-APR-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) State, without proof, the general formula for a Fourier series on $(-\pi, \pi)$ for a function $f(x)$, giving the expressions for the coefficients.
(b) Find the Fourier series of $f(x)=\operatorname{sign}(x)$ on $(-\pi, \pi)$.
(c) State and prove Parseval's identity for a function on $(-\pi, \pi)$.
(d) Hence, or otherwise, prove that

$$
\frac{\pi^{2}}{8}=\sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{2}}
$$

2. (a) Using subscript notation, what is the expression for

$$
\varepsilon_{i j k} \varepsilon_{k l m}
$$

in terms of $\delta_{i l}, \delta_{j m}$, etc.?
(b) Using subscript notation, prove

$$
\operatorname{grad}(\mathbf{A} \cdot \mathbf{B})=(\mathbf{B} \cdot \nabla) \mathbf{A}+(\mathbf{A} \cdot \nabla) \mathbf{B}+\mathbf{B} \times(\operatorname{curl} \mathbf{A})+\mathbf{A} \times(\operatorname{curl} \mathbf{B})
$$

3. (a) State Stokes' theorem carefully.
(b) Show that Stokes' theorem implies that an integral of the following form is independent of path C, provided that the end points of C are fixed:

$$
\int_{C} \operatorname{grad} \phi \cdot d \mathbf{r}
$$

where ϕ is assumed to be smooth and defined everywhere.
(c) Hence or otherwise find

$$
\int_{C}\left(\frac{\mathbf{r}}{|\mathbf{r}|^{3}}+x \mathbf{i}\right) \cdot d \mathbf{r}
$$

where C is the straight line from $(0,1,2)$ to $(1,2,3)$.
4. (a) Define the Jacobian

$$
\frac{\partial(u, v)}{\partial(x, y)}
$$

where $u(x, y)$ and $v(x, y)$ are smooth functions.
(b) By changing the order of integration, or otherwise, find

$$
\int_{0}^{\infty} \int_{\sqrt{ } y}^{\infty} \exp \left(-\mu x^{3}\right) d x d y
$$

where μ is a positive constant. Show, by means of a sketch, the region of integration.
(c) By a suitable change of variables, or otherwise, find

$$
\int_{0}^{\infty} \int_{0}^{\infty} \exp \left(-\left(x^{2}+y^{2}\right)\right) d x d y
$$

Show, by means of a sketch, the region of integration.
5. (a) State the divergence theorem carefully.
(b) Verify the divergence theorem for the vector field

$$
\mathbf{A}=(x+y) \mathbf{i}+\left(x^{2}+x y\right) \mathbf{j}+z^{2} \mathbf{k}
$$

and a unit radius ball centred at (1,1,1). Hint: You might find it helpful to move the ball so its centre is at the origin, as then it will be easy to use symmetry arguments for the integrals.
6. (a) State carefully Green's theorem in the plane.
(b) Show that Green's theorem in the plane is a special case of Stokes' theorem, defining all your symbols carefully.
(c) Verify Green's theorem in the plane for

$$
\oint_{C}(y d x+x(2+y) d y),
$$

where C is the unit circle. Hint: Use symmetry arguments where possible.

